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Prefacio

O presente livro tem como objetivo apresentar tépicos e técnicas de métodos
discretos e andlise combinatéria. Destina-se a estudantes de Graduagao e Mes-
trado, de diversas dreas como Matematica, Estatistica, Ciéncia da Computacao
e Engenharias, assim como a alunos do Ensino Médio, particularmente aqueles
interessados em principios de contagem e resolucao de problemas de Olimpiadas
Matematicas. Neste volume, incluem-se os seguintes temas: logica e conjuntos,
redagao de demonstragoes, fundamentos de combinatéria e enumeragao, probabi-
lidade, relagoes de recorréncia e fungoes geradoras. A teoria é entremeada com
muitas aplicagoes e exemplos, além de interessantes notas histéricas. No final de
cada capitulo, é proposta uma colegao de exercicios, visando a complementar e
revisar as defini¢oes e resultados apresentados.

O livro inicia com os conceitos e ideias importantes da Matematica Discreta:
légica, conjuntos e relagoes. No Capitulo 2, apresentam-se as principais técnicas
de demonstragao, permitindo ao leitor que se familiarize com a natureza de uma
prova. O capitulo também possibilita aos estudantes aprenderem a construir provas
matematicamente corretas, escritas de forma clara e completa.

O Capitulo 3 é dedicado aos elementos da andlise combinatéria: o Principio Fun-
damental da Contagem, permutagoes, arranjos, combinagoes simples e completas,
permutacoes cadticas e o Principio das Gavetas de Dirichlet.

A jornada prossegue no Capitulo 4, com a apresentacao de propriedades dos
coeficientes binomiais e multinomiais e uma exposigao sobre os nimeros de Catalan e
de Stirling. O préximo assunto naturalmente é a Teoria da Probabilidade, abordada
no Capitulo 5. Aqui sdo tratadas a definicao axiomatica e propriedades de uma
medida de probabilidade, probabilidade condicional e variaveis aleatérias discretas.

O Capitulo 6 traz um tratamento detalhado de sequéncias numéricas e férmulas
de recorréncia, com destaque para a sequéncia de Fibonacci, progressoes aritméticas,
progressoes geométricas e equagoes lineares de recorréncia. O capitulo final do
livro se centra em uma ferramenta essencial: as fungdes geradoras (séries formais
de poténcia) e suas aplicagdes em problemas de contagem e enumeragao.
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Os autores ainda brindam o leitor com trés apéndices, que explanam sobre a
distribuicao de bolas em urnas, a formula de Stirling e alguns paradoxos e problemas
classicos em Teoria da Probabilidade.

O livro Matemdtica discreta — Volume 1 representa uma contribuicao signifi-
cativa ao estudo dos conceitos e ferramentas de métodos discretos e do raciocinio
combinatoério. Por meio da exposicao da teoria, aplicagoes e exercicios, pretende,
assim, colaborar para a aquisi¢do de conhecimentos nessas areas e para o desenvol-
vimento da criatividade matematica.

Marco de 2021.

Elcio Lebensztayn.
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1

Nocoes de légica e conjuntos

1.1 Introducao

A Matematica é uma linguagem e como tal necessita de simbolos e regras bem
estabelecidas para conectar e relacionar esses simbolos. Neste primeiro capitulo
apresentaremos os rudimentos basicos da linguagem da logica na qual se sustenta a
Matemaética, introduziremos a nogao de conjunto que é um objeto conveniente para
expressar e manipular as ideias Matematicas. Praticamente toda a Matematica
atual é formulada na linguagem de conjuntos. Portanto, a nocdo de conjunto
é fundamental e a partir dela, os conceitos matematicos podem ser expressos
de maneira bastante precisa. Ela é também uma das mais simples das ideias
matematicas. No século XIX, alguns matematicos e filosofos de grande porte, tais
como Augustus De Morgan, David Boole, Bertrand Russel, entre tantos outros
comegaram a formalizar a l6gica e uséd-la para dar fundamentacao tedrica as bases
da Matematica. Para esse propésito comegaram a desenvolver a chamada Ldgica
Simbdélica, formada por simbolos e uma linguagem proépria e universal, livre de
contexto. Apesar de nao haver uma defini¢do formal do que vem a ser um conjunto,
a palavra conjunto expressa a ideia de cole¢ao de objetos.

No final do século XIX, o matemédtico russo Georg Cantor (1845 — 1918) desen-
volveu uma rigorosa teoria para tratar os conjuntos (A Teoria dos Conjuntos). Nao
vamos tratar dessa teoria aqui pelo fato de ela fugir ao nosso objetivo introdutério
e pelo fato de estarmos interessados apenas em usar a linguagem proveniente
dessa teoria. Por isso, no nosso caso seria mais adequado falar em nogoes sobre a
linguagem dos conjuntos e é justamente isso que faremos a seguir.

Georg Cantor é muito conhecido por ter elaborado a moderna Teoria dos
Conjuntos, foi a partir desta teoria que chegou ao conceito de nimero transfinito,
incluindo as classes numéricas dos cardinais e ordinais e estabelecendo a diferenga
entre estes dois conceitos, que colocaram novos problemas quando se referem a
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conjuntos infinitos. Nasceu em S&o Petersburgo (Russia), filho do comerciante
dinamarqués, George Waldemar Cantor, e de uma musicista russa, Maria Anna
Bohm. Em 1856 sua familia mudou-se para a Alemanha, continuando ai os seus
estudos. Estudou no Instituto Federal de Tecnologia de Zurique. Doutorou-
se na Universidade de Berlim em 1867. Teve como professores Ernst Kummer

(1810 — 1893), Karl Weierstrass (1815 — 1897) e Leopold Kronecker (1823 — 1891).

Figura 1.1: Georg Cantor (1845 — 1918)

1.2 Nocoes de Légica

Antes de apresentarmos a linguagem bésica da Teoria dos Conjuntos, faremos
uma rapida incursao nos rudimentos basicos da Légica Matematica. Simplifica-
damente, a Logica é o estudo dos principios e das técnicas do raciocinio. As
suas origens remontam a Grécia antiga, tendo como seu principal representante
Aristoteles (384 a.C. — 322 a.C.), que é considerado o pai da Loégica. Entretanto
foi apenas no século XVII que uma linguagem simbdlica comegou a ser utilizada no
estudo dessa ciéncia. O famoso matemdtico alemao Gottfried Liebniz (1646 —1716)
foi o responsavel pela introdugao desse linguagem simbélica para o estudo da Légica
como ciéncia formal. O matematico inglés Georg Boole (1815 — 1864) publicou
um famoso trabalho, “An Investigation of the Laws of Thought”, onde ofereceu
importante contribui¢oes para o tratamento formal da Logica como ciéncia, par-
ticularmente do ponto de vista matematico. Atualmente a Logica Matemética
transcende as barreiras da propria Matematica e encontra muitas aplicagoes em
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muitas areas afins como por exemplo na Ciéncia da Computagido e Engenharias.

Figura 1.2: Aristoteles (384 a.C. — 322 a.C.)

A seguir apresentaremos as ideias fundamentais usadas na linguagem da Logica
Matematica, seus simbolos e suas leis que serdo muito Uteis para sistematizar a
escrita e o pensamento matemaético.

Proposigao 1.1. Uma sentenca declarativa que pode ser classificada como ver-
dadeira ou falsa, mas nao ambas é chamada de wma proposi¢io (ou declaragio).
Vamos representar as proposigoes por letras minisculas do alfabeto p, q,1,s,... que
chamaremos de varidveis Booleanas ou varidveis logicas.

Exemplo 1.1. As sequintes sentengas sao consideradas proposigoes:

o Aristételes foi um filésofo grego;
e« 24+2=05;
e Se 1 =2, entao hoje vai chover;

o Todos os carros sao azuis.
Ja as sentengas a seguir nao sao consideradas proposigoes:

o Hoje vai chover? Nesse caso temos uma pergunta. Nao consideraremos
perguntas como sendo proposigoes.

o Hoje vai chover! Nesse caso temos uma exclamagao. Nao consideraremos
exclamagoes como sendo proposicoes.

e x+ 2 = 3. Nao podemos afirmar se essa sentenga ¢ verdadeira ou falsa, pois
nao sabemos quem é o x.
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o Eu acho os cearenses engragados e inteligentes. Nesse caso temos uma opiniao
e nao consideraremos opinioes como sendo proposigoes.

Definicao 1.1. A veracidade ou falsidade de um proposicao é chamado de valor
légico da proposicao que é denotado por (V) (verdadeiro) ou (F) (falso). Em Ciéncia
da Computacao, normalmente utiliza-se os simbolos 1 para verdadeiro e 0 para
falso.

Observacao 1.1. Hda algumas sentengas que nao podem ser classificadas como
verdadeiras ou falsas. Por exemplo, a sentenca: “Fssa sentenca € falsa” Assuma,
por exemplo, que ela € verdadeira. Isso iria contradizer o que ela mesma diz. Caso
vocé assumisse que ela € falsa, isso significaria que ela seria verdadeira, o que
também nos levaria a uma contradicao. Esse tipo de sentenca autocontraditoria
nao € considerada uma proposicio e sim um paradoxo.

Observagao 1.2. O walor légico de uma proposi¢io pode nao ser conhecido por
alguma razao, mas mesmo assim ela ainda pode ser considerada uma proposicao.
Por exemplo, em 1637 o matemadtico francés Pierre de Fermat (1607 — 1665)
conjecturou que se n € Nyn > 3 nao existem trés inteiros nao nulos X,y e z
tais que X™ +y™ = z". O wvalor légico dessa afirmagao é chamado de O Ultimo
Teorema de Fermat sd veio a ser conhecido 258 anos depois, quando o matemdtico
inglés Andrew Wiles provou que realmente Fermat estava certo. Na Matemdtica
ha diversas conjecturas como essa cujo valor logico ainda nao € conhecido ainda
hoje,tais como a Conjectura de Goldbach, seqgundo a qual todo nimero par
maior que 2 é soma de dois nimeros primos (ndo necessariamente distintos) e
a famosa Hipétese de Riemann, sequndo a qual todas as raizes compleras da
fungao zeta de Riemann tem parte real igual a %

Definigao 1.2 (Negagao de uma proposi¢ao). Dada uma proposicio p, definimos
a negagao de p como sendo a proposi¢io ~ p, lé-se nao p, que tem valor logico
contrario ao de p, conforme ilustra a tabela a sequir:

pl~p
VI F
Fl Vv

Essa tabela é chamada de tabela verdade da proposicio p.

1.2.1 Proposi¢coes compostas

No estudo e no uso da Logica Matematica existem varios simbolos que resumimos
na tabela a seguir:
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Conectivo Simbolo Denominacao
e A Conjuncao
ou Vv Disjungao
Se...entao = Condicional
Se, e somente se & Bicondicional
Nao ~ Negagao
Existe = Existéncia
Existe um tinico 3! Unicidade
Para todo v Qualquer que seja

Definig¢ao 1.3 (Proposigdes compostas). Sdao sentengas formadas por duas ou mais
proposigoes que estejam relacionas por conectivos logicos.

Exemplo 1.2. Considere as sequintes proposi¢oes:
e p: Tomar banho.
e (- Usar sabonete.
A partir delas podemos formular outras proposicoes compostas, vejamos:
e p/A\q: Tomar banho e usar sabonete;
o« pV q: Tomar banho ou usar sabonete;
e p = q: Se tomar banho, entdo ird usar sabonete;
e P& q: Tomar banho se, e somente se, usar sabonete;
o pA~q: Tomar banho e nao usar sabonete.

Para atribuirmos valores os 16gicos verdeiro(V) ou falso (F) as proposigoes
compostas utilizamos as chamadas tabelas-verdade. A seguir apresentaremos as
tabelas verdade associadas aos tipos de proposi¢oes compostas mais comuns.

1. Conjuncao: conectivo “e” (/\).

A proposigao p /\ q serd considerada verdadeira (V) apenas no caso em que
as proposicoes p e q foram ambas verdadeiras, noutras palavras, a proposicao
p/\q é considerada falsa (F) quando pelo menos uma das proposigoes p ou q
for falsa. Essas informagoes podem ser resumidas na seguinte tabela verdade:

PAq
\Y

- < <
- <| T <|a

F
F
F
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2. Disjuncdo: conectivo “ou” (V).

A proposigio p V q serd considerada verdadeira (V) quando pelo menos uma
das proposi¢oes p ou q for verdadeira, noutras palavras, a proposicao p V q
s6 serd considerada falsa (F) quando as proposicoes p e q forem falsas. Essas
informagoes podem ser resumidas na seguinte tabela verdade:

Pvq

- <) <]
- <| Tl <|a
<< <<

3. Condicional: conectivo “Se...entdo” (=).

A proposigao p = ( serd considerada falsa (F) apenas no caso em que as
proposi¢oes p for verdadeira (V) e q for falsa (F). Neste caso, teremos a
seguinte tabela-verdade:

Pld|p=gq
VIV] Vv
V[F|[ F
FIV[ Vv
FIF[ Vv

4. Bicondicional: conectivo “Se, e somente se” (&).

Defini¢do 1.4 (Equivaléncia de proposigoes). Duas proposi¢oes p e q sio
equivalentes, indica-se p & q, se tém a mesma tabela de valores ldgicos.

Exemplo 1.3 (Equivaléncia entre uma proposigao e sua contrapositiva). Mostre
que uma proposicao p = ( e sua contrapositiva ~ = ~Pp sdo equivalentes.

Solugao. De fato, as proposigoes p = q e ~ q = ~ p tém a mesma tabela de valores
légicos, ultima coluna das tabelas abaixo, conforme ilustramos a seguir:

Plalp=4q ~q|~p|l~q=-p
ViVl Vv FIF Vv
VIF| F V|F F
FIV] Vv FlV Vv
FIF| V V]V v




