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Prefácio

O presente livro tem como objetivo apresentar tópicos e técnicas de métodos
discretos e análise combinatória. Destina-se a estudantes de Graduação e Mes-
trado, de diversas áreas como Matemática, Estatística, Ciência da Computação
e Engenharias, assim como a alunos do Ensino Médio, particularmente aqueles
interessados em princípios de contagem e resolução de problemas de Olimpíadas
Matemáticas. Neste volume, incluem-se os seguintes temas: lógica e conjuntos,
redação de demonstrações, fundamentos de combinatória e enumeração, probabi-
lidade, relações de recorrência e funções geradoras. A teoria é entremeada com
muitas aplicações e exemplos, além de interessantes notas históricas. No final de
cada capítulo, é proposta uma coleção de exercícios, visando a complementar e
revisar as definições e resultados apresentados.

O livro inicia com os conceitos e ideias importantes da Matemática Discreta:
lógica, conjuntos e relações. No Capítulo 2, apresentam-se as principais técnicas
de demonstração, permitindo ao leitor que se familiarize com a natureza de uma
prova. O capítulo também possibilita aos estudantes aprenderem a construir provas
matematicamente corretas, escritas de forma clara e completa.

O Capítulo 3 é dedicado aos elementos da análise combinatória: o Princípio Fun-
damental da Contagem, permutações, arranjos, combinações simples e completas,
permutações caóticas e o Princípio das Gavetas de Dirichlet.

A jornada prossegue no Capítulo 4, com a apresentação de propriedades dos
coeficientes binomiais e multinomiais e uma exposição sobre os números de Catalan e
de Stirling. O próximo assunto naturalmente é a Teoria da Probabilidade, abordada
no Capítulo 5. Aqui são tratadas a definição axiomática e propriedades de uma
medida de probabilidade, probabilidade condicional e variáveis aleatórias discretas.

O Capítulo 6 traz um tratamento detalhado de sequências numéricas e fórmulas
de recorrência, com destaque para a sequência de Fibonacci, progressões aritméticas,
progressões geométricas e equações lineares de recorrência. O capítulo final do
livro se centra em uma ferramenta essencial: as funções geradoras (séries formais
de potência) e suas aplicações em problemas de contagem e enumeração.
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4 SUMÁRIO

Os autores ainda brindam o leitor com três apêndices, que explanam sobre a
distribuição de bolas em urnas, a fórmula de Stirling e alguns paradoxos e problemas
clássicos em Teoria da Probabilidade.

O livro Matemática discreta – Volume 1 representa uma contribuição signifi-
cativa ao estudo dos conceitos e ferramentas de métodos discretos e do raciocínio
combinatório. Por meio da exposição da teoria, aplicações e exercícios, pretende,
assim, colaborar para a aquisição de conhecimentos nessas áreas e para o desenvol-
vimento da criatividade matemática.

Março de 2021.
Élcio Lebensztayn.
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1

Noções de lógica e conjuntos

1.1 Introdução

A Matemática é uma linguagem e como tal necessita de símbolos e regras bem
estabelecidas para conectar e relacionar esses símbolos. Neste primeiro capítulo
apresentaremos os rudimentos básicos da linguagem da lógica na qual se sustenta a
Matemática, introduziremos a noção de conjunto que é um objeto conveniente para
expressar e manipular as ideias Matemáticas. Praticamente toda a Matemática
atual é formulada na linguagem de conjuntos. Portanto, a noção de conjunto
é fundamental e a partir dela, os conceitos matemáticos podem ser expressos
de maneira bastante precisa. Ela é também uma das mais simples das ideias
matemáticas. No século XIX, alguns matemáticos e filósofos de grande porte, tais
como Augustus De Morgan, David Boole, Bertrand Russel, entre tantos outros
começaram a formalizar a lógica e usá-la para dar fundamentação teórica às bases
da Matemática. Para esse propósito começaram a desenvolver a chamada Lógica
Simbólica, formada por símbolos e uma linguagem própria e universal, livre de
contexto. Apesar de não haver uma definição formal do que vem a ser um conjunto,
a palavra conjunto expressa a ideia de coleção de objetos.

No final do século XIX, o matemático russo Georg Cantor (1845− 1918) desen-
volveu uma rigorosa teoria para tratar os conjuntos (A Teoria dos Conjuntos). Não
vamos tratar dessa teoria aqui pelo fato de ela fugir ao nosso objetivo introdutório
e pelo fato de estarmos interessados apenas em usar a linguagem proveniente
dessa teoria. Por isso, no nosso caso seria mais adequado falar em noções sobre a
linguagem dos conjuntos e é justamente isso que faremos a seguir.

Georg Cantor é muito conhecido por ter elaborado a moderna Teoria dos
Conjuntos, foi a partir desta teoria que chegou ao conceito de número transfinito,
incluindo as classes numéricas dos cardinais e ordinais e estabelecendo a diferença
entre estes dois conceitos, que colocaram novos problemas quando se referem a

1



2 1. NOÇÕES DE LÓGICA E CONJUNTOS

conjuntos infinitos. Nasceu em São Petersburgo (Rússia), filho do comerciante
dinamarquês, George Waldemar Cantor, e de uma musicista russa, Maria Anna
Böhm. Em 1856 sua família mudou-se para a Alemanha, continuando aí os seus
estudos. Estudou no Instituto Federal de Tecnologia de Zurique. Doutorou-
se na Universidade de Berlim em 1867. Teve como professores Ernst Kummer
(1810− 1893), Karl Weierstrass (1815− 1897) e Leopold Kronecker (1823− 1891).

Figura 1.1: Georg Cantor (1845− 1918)

1.2 Noções de Lógica
Antes de apresentarmos a linguagem básica da Teoria dos Conjuntos, faremos

uma rápida incursão nos rudimentos básicos da Lógica Matemática. Simplifica-
damente, a Lógica é o estudo dos princípios e das técnicas do raciocínio. As
suas origens remontam à Grécia antiga, tendo como seu principal representante
Aristóteles (384 a.C.− 322 a.C.), que é considerado o pai da Lógica. Entretanto
foi apenas no século XVII que uma linguagem simbólica começou a ser utilizada no
estudo dessa ciência. O famoso matemático alemão Gottfried Liebniz (1646−1716)
foi o responsável pela introdução desse linguagem simbólica para o estudo da Lógica
como ciência formal. O matemático inglês Georg Boole (1815 − 1864) publicou
um famoso trabalho, “An Investigation of the Laws of Thought”, onde ofereceu
importante contribuições para o tratamento formal da Lógica como ciência, par-
ticularmente do ponto de vista matemático. Atualmente a Lógica Matemática
transcende as barreiras da própria Matemática e encontra muitas aplicações em
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muitas áreas afins como por exemplo na Ciência da Computação e Engenharias.

Figura 1.2: Aristóteles (384 a.C. − 322 a.C.)

A seguir apresentaremos as ideias fundamentais usadas na linguagem da Lógica
Matemática, seus símbolos e suas leis que serão muito úteis para sistematizar a
escrita e o pensamento matemático.

Proposição 1.1. Uma sentença declarativa que pode ser classificada como ver-
dadeira ou falsa, mas não ambas é chamada de uma proposição (ou declaração).
Vamos representar as proposições por letras minúsculas do alfabeto p, q, r, s, . . . que
chamaremos de variáveis Booleanas ou variáveis lógicas.

Exemplo 1.1. As seguintes sentenças são consideradas proposições:

• Aristóteles foi um filósofo grego;

• 2+ 2 = 5;

• Se 1 = 2, então hoje vai chover;

• Todos os carros são azuis.

Já as sentenças a seguir não são consideradas proposições:

• Hoje vai chover? Nesse caso temos uma pergunta. Não consideraremos
perguntas como sendo proposições.

• Hoje vai chover! Nesse caso temos uma exclamação. Não consideraremos
exclamações como sendo proposições.

• x+ 2 = 3. Não podemos afirmar se essa sentença é verdadeira ou falsa, pois
não sabemos quem é o x.
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• Eu acho os cearenses engraçados e inteligentes. Nesse caso temos uma opinião
e não consideraremos opiniões como sendo proposições.

Definição 1.1. A veracidade ou falsidade de um proposição é chamado de valor
lógico da proposição que é denotado por (V) (verdadeiro) ou (F) (falso). Em Ciência
da Computação, normalmente utiliza-se os símbolos 1 para verdadeiro e 0 para
falso.

Observação 1.1. Há algumas sentenças que não podem ser classificadas como
verdadeiras ou falsas. Por exemplo, a sentença: “Essa sentença é falsa”. Assuma,
por exemplo, que ela é verdadeira. Isso iria contradizer o que ela mesma diz. Caso
você assumisse que ela é falsa, isso significaria que ela seria verdadeira, o que
também nos levaria a uma contradição. Esse tipo de sentença autocontraditória
não é considerada uma proposição e sim um paradoxo.

Observação 1.2. O valor lógico de uma proposição pode não ser conhecido por
alguma razão, mas mesmo assim ela ainda pode ser considerada uma proposição.
Por exemplo, em 1637 o matemático francês Pierre de Fermat (1607 − 1665)
conjecturou que se n ∈ N, n ≥ 3 não existem três inteiros não nulos x, y e z

tais que xn + yn = zn. O valor lógico dessa afirmação é chamado de O Último
Teorema de Fermat só veio a ser conhecido 258 anos depois, quando o matemático
inglês Andrew Wiles provou que realmente Fermat estava certo. Na Matemática
há diversas conjecturas como essa cujo valor lógico ainda não é conhecido ainda
hoje,tais como a Conjectura de Goldbach, segundo a qual todo número par
maior que 2 é soma de dois números primos (não necessariamente distintos) e
a famosa Hipótese de Riemann, segundo a qual todas as raízes complexas da
função zeta de Riemann tem parte real igual a 1

2
.

Definição 1.2 (Negação de uma proposição). Dada uma proposição p, definimos
a negação de p como sendo a proposição ∼ p, lê-se não p, que tem valor lógico
contrário ao de p, conforme ilustra a tabela a seguir:

p ∼ p

V F
F V

Essa tabela é chamada de tabela verdade da proposição p.

1.2.1 Proposições compostas
No estudo e no uso da Lógica Matemática existem vários símbolos que resumimos

na tabela a seguir:



1.2. NOÇÕES DE LÓGICA 5

Conectivo Símbolo Denominação
e ∧ Conjunção

ou ∨ Disjunção
Se...então ⇒ Condicional

Se, e somente se ⇔ Bicondicional
Não ∼ Negação

Existe ∃ Existência
Existe um único ∃! Unicidade

Para todo ∀ Qualquer que seja

Definição 1.3 (Proposições compostas). São sentenças formadas por duas ou mais
proposições que estejam relacionas por conectivos lógicos.

Exemplo 1.2. Considere as seguintes proposições:

• p: Tomar banho.

• q: Usar sabonete.

A partir delas podemos formular outras proposições compostas, vejamos:

• p∧ q: Tomar banho e usar sabonete;

• p∨ q: Tomar banho ou usar sabonete;

• p ⇒ q: Se tomar banho, então irá usar sabonete;

• p ⇔ q: Tomar banho se, e somente se, usar sabonete;

• p∧ ∼ q: Tomar banho e não usar sabonete.

Para atribuirmos valores os lógicos verdeiro(V) ou falso (F) às proposições
compostas utilizamos as chamadas tabelas-verdade. A seguir apresentaremos as
tabelas verdade associadas aos tipos de proposições compostas mais comuns.

1. Conjunção: conectivo “e” (∧).
A proposição p∧ q será considerada verdadeira (V) apenas no caso em que
as proposições p e q foram ambas verdadeiras, noutras palavras, a proposição
p∧q é considerada falsa (F) quando pelo menos uma das proposições p ou q

for falsa. Essas informações podem ser resumidas na seguinte tabela verdade:

p q p∧ q

V V V

V F F

F V F

F F F
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2. Disjunção: conectivo “ou” (∨).
A proposição p∨ q será considerada verdadeira (V) quando pelo menos uma
das proposições p ou q for verdadeira, noutras palavras, a proposição p∨ q

só será considerada falsa (F) quando as proposições p e q forem falsas. Essas
informações podem ser resumidas na seguinte tabela verdade:

p q p∨ q

V V V

V F V

F V V

F F F

3. Condicional: conectivo “Se...então” (⇒).
A proposição p ⇒ q será considerada falsa (F) apenas no caso em que as
proposições p for verdadeira (V) e q for falsa (F). Neste caso, teremos a
seguinte tabela-verdade:

p q p ⇒ q

V V V

V F F

F V V

F F V

4. Bicondicional: conectivo “Se, e somente se” (⇔).

Definição 1.4 (Equivalência de proposições). Duas proposições p e q são
equivalentes, indica-se p ⇔ q, se têm a mesma tabela de valores lógicos.

Exemplo 1.3 (Equivalência entre uma proposição e sua contrapositiva). Mostre
que uma proposição p ⇒ q e sua contrapositiva ∼ q ⇒ ∼ p são equivalentes.

Solução. De fato, as proposições p ⇒ q e ∼ q ⇒ ∼ p têm a mesma tabela de valores
lógicos, última coluna das tabelas abaixo, conforme ilustramos a seguir:

p q p ⇒ q

V V V

V F F

F V V

F F V

∼ q ∼ p ∼ q ⇒∼ p

F F V

V F F

F V V

V V V


