Raízes Intelectuais, Contexto Histórico e Desenvolvimento Científico

"grafica" — 2025/9/10 — 7:07 — page 2 — #2

ROBERTO DE ANDRADE MARTINS

ERWIN SCHRÖDINGER E A CRIAÇÃO DA MECÂNICA ONDULATÓRIA

Raízes Intelectuais, Contexto Histórico e Desenvolvimento Científico

Copyright © 2025 Roberto de Andrade Martins

Editores: José Roberto Marinho e Victor Pereira Marinho Projeto gráfico e Diagramação: Horizon Soluções Editoriais

Capa: Horizon Soluções Editoriais

Texto em conformidade com as novas regras ortográficas do Acordo da Língua Portuguesa.

Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil)

Martins, Roberto de Andrade

Erwin Schrödinger e a criação da mecânica ondulatória: raízes intelectuais, contexto histórico e desenvolvimento científico / Roberto de Andrade Martins. - 1. ed. - São Paulo: LF Editorial, 2025.

Inclui bibliografia ISBN: 978-65-5563-635-2

1. Físicos - Áustria - Biografia 2. Mecânica 3. Schrödinger, Erwin Rudolf Josef Alexander, 1887-1961 I. Título.

25-284763 CDD: 530.092

Índices para catálogo sistemático:

1. Físicos: Vida e obra 530.092

Eliane de Freitas Leite - Bibliotecária - CRB-8/8415

ISBN: 978-65-5563-635-2

Todos os direitos reservados. Nenhuma parte desta obra poderá ser reproduzida sejam quais forem os meios empregados sem a permissão do autor. Aos infratores aplicam-se as sanções previstas nos artigos 102, 104, 106 e 107 da Lei n. 9.610, de 19 de fevereiro de 1998.

Impresso no Brasil | Printed in Brazil

LF Editorial

Fone: (11) 2648-6666 / Loja (IFUSP) Fone: (11) 3936-3413 / Editora

www.livrariadafisica.com.br | www.lfeditorial.com.br

CONSELHO EDITORIAL

Amílcar Pinto Martins

Universidade Aberta de Portugal

Arthur Belford Powell

Rutgers University, Newark, USA

Carlos Aldemir Farias da Silva

Universidade Federal do Pará

Emmánuel Lizcano Fernandes

UNED, Madri

Iran Abreu Mendes

Universidade Federal do Pará

José D'Assunção Barros

Universidade Federal Rural do Rio de Janeiro

Luis Radford

Universidade Laurentienne, Canadá

Manoel de Campos Almeida

Pontifícia Universidade Católica do Paraná

Maria Aparecida Viggiani Bicudo

Universidade Estadual Paulista - UNESP/Rio Claro

Maria da Conceição Xavier de Almeida

Universidade Federal do Rio Grande do Norte

Maria do Socorro de Sousa

Universidade Federal do Ceará

Maria Luisa Oliveras

Universidade de Granada, Espanha

Maria Marly de Oliveira

Universidade Federal Rural de Pernambuco

Raquel Gonçalves-Maia

Universidade de Lisboa

Teresa Vergani

Universidade Aberta de Portugal

"grafica" — 2025/9/10 — 7:07 — page 6 — #6

Er min Lehrödringer

 \oplus

"grafica" — 2025/9/10 — 7:07 — page 8 — #8

SUMÁRIO

PRE	FÁCIO		13
1	INTROE	DUÇÃO	17
2	RAÍZES	INTELECTUAIS, FORMAÇÃO INICIAL E PRIMEIRAS PESQUISAS	21
	2.1	O AMBIENTE VIENENSE: CULTURA E CIÊNCIA	21
	2.2	FORMAÇÃO NA UNIVERSIDADE DE VIENA	27
	2.3	MENTORES CRUCIAIS: BOLTZMANN, EXNER E HASENÖHRL	32
	2.4	PRIMEIROS TRABALHOS CIENTÍFICOS	40
	2.4	4.1 Condutividade superficial	40
	2.4	4.2 Teoria do magnetismo	42
	2.4	4.3 Estudos sobre os dielétricos	43
	2.4	4.4 Eletricidade atmosférica e radiação	45
	2.4	4.5 Difração de raios-X	49
	2.5	A TEORIA QUÂNTICA EM VIENA	50
	2.6	O PERÍODO DA PRIMEIRA GUERRA MUNDIAL	61
	2.7	Após a guerra: dificuldades, peregrinação e novas pesquisas	65
	2.8	A TEORIA QUÂNTICA DE 1911 A 1922	74
	2.9	SCHRÖDINGER E A TEORIA QUÂNTICA: PERÍODO INTERMEDIÁRIO	77
3	O ENC	ONTRO COM DE BROGLIE E A ESTATÍSTICA DE GASES	87
	3.1	Louis de Broglie e a dualidade onda-partícula	
	3.2	A ESTATÍSTICA QUÂNTICA DOS GASES	97
	3.3	O ENVOLVIMENTO DE SCHRÖDINGER (1925)	104
4	O SALT	O DECISIVO	113
	4.1	A BUSCA PELA FUNÇÃO DE ONDA	120
	4.2	FÉRIAS DE NATAL EM AROSA	126
	4.3	Os manuscritos de Schrödinger	132
	11	OS ARTIGOS FLINDAMENTAIS	1/19

5	-	TIZAÇÃO COMO UM PROBLEMA DE AUTOVALOR.	
PRII	MEIRA ME	MÓRIA"	155
	5.1	O OBJETIVO DE SCHRÖDINGER	156
	5.2	"DEDUÇÃO" DA EQUAÇÃO DE ONDA	159
	5.3	SOLUÇÃO PARA O ÁTOMO DE HIDROGÊNIO	162
	5.4	AS VIBRAÇÕES ELETRÔNICAS	164
	5.5	ENERGIA E FREQUÊNCIA	166
	5.6	BATIMENTOS DE ONDAS E A CONDIÇÃO DE BOHR	168
	5.7	O ADENDO: OUTRA APRESENTAÇÃO DA EQUAÇÃO DE ONDA	170
6	"QUAN	TIZAÇÃO COMO UM PROBLEMA DE AUTOVALOR.	
SEG		MÓRIA"	171
	6.1	Nova "dedução" da equação de onda	171
	6.2	A RELAÇÃO ENTRE ÓPTICA E MECÂNICA, SEGUNDO HAMILTON	
	6.3	COORDENADAS GENERALIZADAS E GEOMETRIA NÃO-EUCLIDIANA	
	6.4	INTRODUÇÃO DA IDEIA DE FRENTE DE ONDA	
	6.5	RELAÇÃO ENTRE OS PRINCÍPIOS DE FERMAT E DE MAUPERTUIS	
	6.6	IMPORTÂNCIA DE UMA "MECÂNICA ONDULATÓRIA"	
	6.7	Propriedades da onda de fase	
	6.8	GRUPOS DE ONDAS	
	6.9	LIMITE DA FÍSICA CLÁSSICA E CONCEPÇÃO DE UMA NOVA MECÂNICA	
	6.10	Nova justificativa da equação de onda	
	6.11	Os pressupostos de Schrödinger	
7	ΑΡΙΙζΑ	ÇÕES DA EQUAÇÃO DE ONDA	195
•			
	7.1	O OSCILADOR LINEAR	
	7.2	O QUE É MAIS FUNDAMENTAL: ENERGIA OU FREQUÊNCIA?	
	7.3	QUANTIZAÇÃO DA ROTAÇÃO COM EIXO FIXO	
	7.4	QUANTIZAÇÃO DA ROTAÇÃO COM EIXO LIVRE	
	7.5	MOLÉCULA DIATÔMICA COM ROTAÇÃO E VIBRAÇÃO	206
	76	DELAÇÃO COM A MEGÂNICA MATRICIAL	200

11

8	"QUANTIZAÇÃO COMO UM PROBLEMA DE AUTOVALOR.				
TER	CEIRA ME	EMÓRIA"	215		
	8.1	MÉTODO DE PERTURBAÇÃO	215		
	8.2	O EFEITO STARK	218		
	8.3	INTENSIDADE DAS RAIAS ESPECTRAIS	220		
9	"QUAN	ITIZAÇÃO COMO UM PROBLEMA DE AUTOVALOR.			
QUA	RTA MEM	1ÓRIA"	225		
	9.1	EQUAÇÃO DE ONDA DEPENDENTE DO TEMPO	226		
	9.2	EQUAÇÃO DE ONDA RELATIVÍSTICA	229		
	9.3	O SIGNIFICADO FÍSICO DA FUNÇÃO DE ONDA	230		
10	A MEC	ÂNICA ONDULATÓRIA EM 1926	233		
	10.1	Reações positivas	234		
	10.2	APLICAÇÕES DA TEORIA POR OUTROS PESQUISADORES	242		
	10.3	REAÇÕES CRÍTICAS	243		
	10.4	SÍNTESE DOS RESULTADOS	245		
	10.5	LIMITAÇÕES E PROBLEMAS	247		
	COMEN	NTÁRIOS FINAIS	251		
11	COME	VIANIOS FIIVAIS	ZJ		

REFERÊNCIAS BIBLIOGRÁFICAS295

"grafica" — 2025/9/10 — 7:07 — page 12 — #12

Prefácio

Esta obra é uma homenagem a Erwin Schrödinger, o criador da Mecânica Ondulatória. Pode-se dizer que ele criou sozinho essa sua versão da Teoria Quântica — ao contrário da Mecânica Matricial, que foi um trabalho coletivo. É claro que Schrödinger não partiu do zero. Seu ponto de partida foi a teoria de Louis de Broglie sobre ondas associadas a partículas; e ele utilizou muitos trabalhos anteriores, da "velha teoria quântica", adaptando seus cálculos à nova teoria. Afinal de contas, toda contribuição científica faz parte de uma complexa rede de trabalhos, não brotando em um deserto. Porém, é inegável que a base da Mecânica Ondulatória foi criada apenas por ele, em uma série de artigos que escreveu no primeiro semestre de 1926.

Este livro aborda a trajetória científica de Schrödinger, desde sua formação inicial, até o seu trabalho fundamental de 1926. Essa data final é uma escolha arbitrária, já que ele desenvolveu pesquisas importantes após esse ano – incluindo o famoso "paradoxo do gato de Schrödinger", de 1935, que não será abordado aqui. Toda a discussão sobre a interpretação da Mecânica Quântica, envolvendo Schrödinger e Einstein de um lado, contra Bohr, Heisenberg e os outros defensores da "Interpretação de Copenhagen", também não

será tratada neste livro. A própria evolução posterior das ideias de Schrödinger a respeito da Mecânica Quântica, que é um tema muito interessante, ficou de fora do período que escolhi estudar. Estou esclarecendo isso desde o início, para que ninguém fique decepcionado com meu livro: ele realmente só tem o objetivo de estudar o período que vai até os trabalhos fundadores da Mecânica Ondulatória.

A parte inicial do livro é de leitura mais fácil, já que trata sobre a vida de Schrödinger, seus estudos, suas primeiras pesquisas e o contexto da época, sem entrar em muitos detalhes científicos. A partir do capítulo 3, no entanto, foi preciso entrar mais profundamente nas ideias e apresentar os raciocínios matemáticos envolvidos. Isso se faz necessário para mostrar claramente as dificuldades envolvidas na pesquisa de Schrödinger. Os seus artigos do primeiro semestre de 1926 são dissecados mais detalhadamente, mostrando seus aspectos positivos, mas sem esconder os pontos fracos. Por isso, este livro se destina a pessoas que têm um conhecimento técnico de física, para poderem acompanhar os raciocínios apresentados.

É fundamental compreender que aquilo que Schrödinger produziu não foi apenas a equação de onda que leva o seu nome; ele criou um novo método de estudo dos fenômenos quânticos e o aplicou a diversos problemas, como a influência de campos elétricos no desdobramento das raias espectrais (efeito Stark). Restringir a contribuição de Schrödinger à equação de onda é tão tolo quanto dizer que a única coisa importante que Newton fez foi propor suas leis do movimento.

Coloquei como apêndice, ao final do livro, uma tradução de um artigo de revisão que Schrödinger escreveu no segundo semestre de 1926, resumindo aquilo que ele já havia produzido. Embora sintetize os artigos fundamentais do primeiro semestre de 1926, este artigo é

mais simples e melhor estruturado. Espero que você aprecie a oportunidade de ter um contato direto com o estilo do autor.

Por fim, quero agradecer o estímulo recebido do prof. Nelson Studart para desenvolver este trabalho e à Livraria da Física pelo constante apoio na divulgação de meus livros.

> Extrema, 11 de junho de 1925. Roberto de Andrade Martins

15

 \oplus

"grafica" — 2025/9/10 — 7:07 — page 16 — #16

1 Introdução

O ano de 1926 é uma data marcante na história da física do século XX. Em uma sequência notável de quatro artigos que apareceram em rápida sucessão na revista *Annalen der Physik* (Schrödinger, 1926b, 1926c, 1926d, 1926e), o físico austríaco Erwin Schrödinger (1887-1961) apresentou ao mundo científico a sua Mecânica Ondulatória. Os quatro artigos, todos eles intitulados *Quantisierung als Eigenwertproblem* ("Quantização como um problema de autovalor"), introduziram uma justificativa ondulatória para a existência da quantização, inspirada na teoria de Louis de Broglie (Martins & Rosa, 2014). A nova teoria, sintetizada na famosa equação que leva seu nome, propunha uma representação completamente diferente do mundo atômico – ondas contínuas e equações diferenciais

¹ No ano seguinte, estes quatro artigos de Schrödinger foram publicados sob forma de livro (Schrödinger, 1927a), juntamente com outros dois artigos (Schrödinger, 1926f, 1926g), por isso às vezes são mencionados os seis (e não quatro) artigos fundamentais de 1926. A segunda edição dessa coletânea (Schrödinger, 1928a), que inclui outros três artigos (Schrödinger, 1927b, 1927c, 1927d), foi publicada em 1928 e traduzida depois para o inglês (Schrödinger, 1928b). Essas coletâneas não contêm um artigo que Schrödinger publicou na *Physical Review* no final de 1926 (Schrödinger, 1926h) e cuja tradução completa se encontra no Anexo deste livro.

familiares – contrastando fortemente com as orientações quânticas predominantes anteriormente e com a Mecânica Matricial que estava se desenvolvendo na mesma época (Beller, 1983; Blum, Jähnert, Lehner & Renn, 2017). O impacto foi imediato e profundo. Rendeu a Schrödinger o Prêmio Nobel de Física em 1933 (compartilhado com Paul Dirac) e tornou-se um dos pilares sobre os quais a moderna física quântica foi construída. A equação de onda de Schrödinger se tornou uma ferramenta prática amplamente empregada com grande sucesso em fenômenos que vão desde a estrutura de átomos e moléculas até a física do estado sólido e outros temas.

A emergência da mecânica ondulatória não ocorreu como um "Eureka" a partir do nada. Pelo contrário, surgiu em um momento de profunda crise e efervescência na física teórica. A "velha" teoria quântica, iniciada por Max Planck em 1900 e desenvolvida principalmente por Niels Bohr e Arnold Sommerfeld entre 1913 e o início dos anos 1920, havia alcançado sucessos notáveis, como a explicação das linhas espectrais do hidrogênio, com a introdução de regras de quantização ad hoc (Gilibierti & Lovisetti, 2024; Kragh, 1999, 2012). No entanto, suas limitações tornavam-se cada vez mais evidentes. O modelo de Bohr-Sommerfeld falhava em explicar as intensidades das linhas espectrais, o espectro de átomos mais complexos que o hidrogênio (como o hélio), o efeito Zeeman anômalo, e carecia de uma estrutura matemática unificada e consistente. A física encontrava-se em um estado de "remendos", com regras quânticas impostas sobre a mecânica clássica de forma muitas vezes arbitrária e insatisfatória (Mehra & Rechenberg, 1982).

Em meados de 1925, um primeiro avanço revolucionário ocorreu com o surgimento da Mecânica Matricial por Werner Heisenberg, com contribuições subsequentes de Max Born e Pascual Jordan (Heisenberg, 1925; Born & Jordan, 1925; Born, Heisenberg &

Jordan, 1926). Esta foi a primeira formulação matemática coerente da mecânica quântica, baseada em quantidades observáveis (frequências e intensidades espectrais) e utilizando o formalismo matemático abstrato das matrizes. Embora poderosa e bem-sucedida em seus resultados, a mecânica matricial era conceitualmente desafiadora, abandonando a intuição clássica e a possibilidade de visualização (*Anschaulichkeit*) de órbitas e trajetórias no espaço-tempo (Jammer, 1989). Sua natureza abstrata e seu formalismo pouco familiar representaram uma barreira para muitos físicos da época.

Foi neste cenário complexo que Erwin Schrödinger, que nessa época era professor na Universidade de Zurique, apresentou sua alternativa. A Mecânica Ondulatória, com sua base em ondas e equações diferenciais parciais, pareceu a muitos, incluindo o próprio Schrödinger, um retorno bem-vindo a uma forma mais intuitiva e visualizável de física, ancorada na tradição da física clássica de campos contínuos. A rapidez com que foi adotada e a tentativa de demonstração de sua equivalência matemática com a mecânica matricial, realizada pelo próprio Schrödinger e, independentemente, por Carl Eckart e outros (Martins, 2021) solidificaram seu lugar como uma formulação central da nova física quântica.

Este livro tem como objetivo principal investigar a gênese da mecânica ondulatória de Schrödinger. Buscaremos desvendar a complexa teia de influências, ideias e raciocínios que convergiram para a criação desta teoria seminal em 1926. Argumentaremos que a mecânica ondulatória não foi um acontecimento brusco e incompreensível, mas sim o resultado de uma confluência única de fatores, incluindo a formação de Schrödinger, os seus interesses de pesquisa anteriores (especialmente mecânica estatística), seu envolvimento

com a teoria quântica antes de 1926, as pesquisas de Bose e Einstein sobre estatística de gases, e a teoria das ondas de matéria de Louis de Broglie.

Ao analisar esses diferentes fios condutores – as raízes intelectuais, o contexto imediato, as rotas de derivação e as razões para sua formulação – esperamos oferecer uma compreensão mais profunda e contextualizada de como uma das teorias mais importantes da Física Moderna veio a existir, iluminando não apenas o processo criativo de Schrödinger, mas também a dinâmica da própria revolução quântica. Os capítulos subsequentes explorarão cada um desses aspectos em detalhe, começando pelo pano de fundo intelectual e os primeiros trabalhos de Schrödinger, seguindo para seu encontro com as ideias de De Broglie e Einstein, detalhando os seus trabalhos de 1926, analisando suas interpretações e justificativas, e concluindo com a relação com a mecânica matricial e sua recepção inicial.