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Prefácio

Estas notas se dedicam ao estudo da chamada álgebra linear de
forma geométrica, tendo como pano de fundo as ideias oriundas de
métodos da teoria de grupos de Lie e variedades diferenciáveis. O
objetivo principal é fornecer, de maneira elementar, a relação entre
as transformações lineares e o espaço de matrizes associadas a um
par de bases para o domínio e contradomínio das transformações.
Naturalmente, estamos supondo que o leitor possui uma certa
familiaridade com matrizes e seus produtos.

O primeiro capítulo se dedica ao estudo dos sistemas lineares
através de suas matrizes associadas. A principal estratégia é introduzir
o conceito de redução à forma escalonada (devido à Carl F. Gauss,
B.-I. Clasen e Wilhelm Jordan, cf. [14], [7], [22], [1], [23]) para obter
soluções do sistema. Como subproduto, obtemos um algoritmo que
nos permite calcular explicitamente a inversa de uma matriz quadrada,
quando essa existir. Convém ressaltar que o estudo das soluções de
sistemas homogêneos será de fundamental importância na definição
do conceito de dimensão de um espaço vetorial. Aqui é forte a
presença da ação do grupo de Lie GL(m, R) sobre o espaço M(m, n)
das matrizes com m linhas e n colunas, uma vez que substituímos as
operações elementares sobre as linhas dos sistema pela multiplicação
à esquerda por matrizes elementares sobre a matriz do sistema linear.
Encerramos esse capítulo com a fatoração LU, que é uma aplicação
numérica importante para ciência de dados. O estudo detalhado que
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fizemos das operações elementares será muito profícuo nesse último
tópico, pois permite não só uma demonstração concisa como também
a obtenção de fórmulas explícitas de recorrência para a matriz L.

No segundo capítulo, introduzimos o conceito de determinante,
com o fito de responder quando um sistema linear possui ou não
solução única, sem obtê-la explicitamente. Finalmente, introduzimos
o conceito de adjunta de uma matriz, como ferramenta auxiliar para
obter sua inversa. Nesse capítulo, ressaltamos a demonstração concisa
e combinatorial do fato do determinante de uma matriz e de sua
transposta coincidirem.

O terceiro capítulo trata dos espaços vetoriais de dimensão
finita. Aqui iremos introduzir o conceito de base e explicitar a
questão da representação de um vetor numa dada base, comparando
representações distintas de forma sistemática. Trata-se do que se
costuma chamar em matemática de uma escolha de sistema de
coordenadas. A ênfase nesse ponto permite ao leitor que seguirá
cursos de pós-graduação compreender melhor a noção de variedades
diferenciáveis.

No quarto capítulo, nos dedicamos ao estudo das transformações
lineares e de suas relações com o espaço de matrizes associadas, uma
vez fixada uma base para o domínio e outra para o contradomínio das
transformações. Nesse capítulo, abordamos as transformações lineares
de uma forma totalmente distinta dos textos usuais sobre o tema. Se há
alguma contribuição original nestas notas, essa certamente encontra-
se na abordagem realizada nesse capítulo. Em vez de estudarmos as
transformações lineares através de intrincados somatórios, analisamos
o tema do ponto de vista diagramático, dando ênfase à multiplicação
de matrizes como um objeto geométrico. O leitor treinado no assunto
vai perceber de pronto a influência da estrutura de grupos de Lie de
matrizes por trás dessa abordagem. O ponto alto é a trivialidade com
que demonstramos o teorema de mudança de base. Escolhemos essa
abordagem porque acreditamos que a álgebra linear é um excelente
laboratório para a introdução de conceitos mais avançados como o de
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cartas locais de uma variedade diferenciável e mesmo de cociclos de
transição.

No quinto capítulo, tratamos do estudo das transformações
lineares através dos autovalores e autovetores, buscando condições
necessárias para a diagonalização de uma matriz que represente um
operador dado. A ideia fundamental é a de buscar um sistema de
coordenadas adequado (ou base), de forma a conseguirmos a matriz
mais simples possível representado esse operador linear.

Já no sexto capítulo, tratamos dos espaços vetoriais munidos de
produto interno. Iremos aqui nos ater às implicações geométricas
dessas estruturas em espaços cartesianos com baixa dimensão,
relacionando-os ao estudo das posições relativas entre retas e planos.
Como em alguns cursos de Engenharia a disciplina de Geometria
Analítica tem entrado em ocaso, sendo sua parte afim redistribuída na
disciplina Álgebra Linear, tratamos em algumas seções dessa questão,
introduzindo o produto vetorial de maneira geometricamente rigorosa
com o auxílio do conceito de orientação, dispensando o uso precário
da assim chamada “regra da mão direita” na definição de produto
vetorial. Trata-se de um excelente laboratório para a aplicação dos
operadores lineares.

No sétimo capítulo, tratamos das transformações lineares em
espaço munidos de produto interno. O objetivo fundamental aqui
é mostrar como essas estruturas adicionais ao espaço permitem
classificar as transformações lineares que as preservam. O ponto
culminante é certamente o teorema espectral, muito embora seja
a decomposição polar um resultado de relevância também tratado
nesse capítulo. Encerramos esse capítulo com algumas aplicações
numéricas importantes, apresentando métodos de decomposição
matricial que derivam da fatoração LU, tais como LDLt, Cholesky
e QR. Na sequência, tratamos do método dos mínimos quadrados
e da decomposição em valores singulares. Mais uma vez, trata-se de
tópicos importantes para a ciência de dados contemporânea.

O oitavo capítulo trata das principais propriedades dos espaços
vetoriais complexos, da complexificação de espaços reais e finalmente
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da complexificação de operadores reais. Nosso objetivo aqui é
desmistificar esses espaços, cujas aplicações são tão prolíficas no
estudo dos mais diversos fenômenos naturais. Esse capítulo é
essencialmente um preparativo para o seguinte, muito embora tenha
interesse próprio como preâmbulo linear ao estudo das variedades
analíticas complexas.

No nono capítulo, tratamos de alguns teoremas de decomposição,
assunto esse de fundamental importância no estudo das equações
diferenciais lineares. Mais especificamente, forneceremos uma
demonstração geométrica construtiva e convincente do teorema de
decomposição do matemático francês Camille Jordan [21, § II,
Cap. 2]. Esse é o principal motivo de nos concentramos num
estudo detalhado da “complexificação” de operadores em espaços
vetoriais reais no Capítulo 8. Chamamos especial atenção para
a demonstração construtiva do teorema da decomposição cíclica
(Teorema 9.3.13), que fornecerá ao leitor a possibilidade de construir
explicitamente uma base que normaliza um operador nilpotente
dado (e.g., Exemplo 9.3.16). Essa talvez seja uma contribuição
original ao estudo do tema. Ao final do capítulo temos algumas
aplicações. Iniciamos com um estudo sobre o raio espectral de uma
matriz quadrada, assunto de vital importância no estudo de métodos
iterativos para soluções de sistemas lineares. Na sequência, tratamos
brevemente as equações diferenciais lineares.

O décimo e último capítulo trata de alguns tópicos da álgebra
multilinear que são de fundamental importância no estudo de objetos
geométricos. Essencialmente, isso é uma herança do cálculo absoluto
de Levi-Civita e Ricci-Curbastro ([26], [24, Ch. 37 e 48]) e do método do
referencial móvel de Élie Cartan ([6]). Seu conteúdo está presente na
geometria diferencial moderna, na física, na teoria das singularidades,
nos sistemas dinâmicos, no estudo de folheações (cf., e.g., [6], [15],
[28], [10], [11], [5]) etc. Iremos nos ater aqui à parte linear da
estrutura, i.e., todos os objetos terão coeficientes constantes. Quando
esses coeficientes variam, passamos ao reino da análise global, que
está fora do escopo destas notas. Note ainda que acrescentamos ao
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conteúdo usual sobre tensores e formas o conceito de espaço ortogonal
a um subespaço vetorial, assim como o conceito de espaço associado e
sistema associado a uma p-forma. Toda a teoria de formas diferenciais
foi introduzida originalmente por Élie Cartan em [6], incluindo esses
conceitos.

Observemos que os sete primeiros capítulos fazem parte de um
curso introdutório de álgebra linear e devem constar da formação
básica de graduandos em Matemática, Física e Engenharia em
qualquer boa escola de ciência ou tecnologia. A partir do oitavo
capítulo, a formação se torna mais especializada para alunos que
pretendem realizar um curso de mestrado em Matemática ou Física
Teórica e possivelmente cursos avançados em tecnologia. Os pré-
requisitos básicos para os Capítulos 8 e 9 são, como de costume, uma
certa maturidade em Matemática – adquirida em geral com quatro
períodos letivos em um curso de Matemática – e um curso introdutório
de Álgebra Linear que tenha tratado de questões fundamentais
como: o teorema do núcleo e da imagem, decomposição em somas
diretas, invariância, mudanças de base, autovalores, autovetores, polinômio
característico e, por fim, o teorema de Cayley-Hamilton (Teorema 8.6.2).

Finalmente, gostaríamos de chamar a atenção para o fato de que,
em literatura moderna, costuma-se utilizar demonstrações cada vez
mais concisas e “mágicas” seguindo, em geral, uma sequência lógica
que não fornece ao leitor o verdadeiro caráter de onde se tiram as
ideias para uma primeira demonstração de um teorema. Neste texto,
preferimos uma postura construtivista, mostrando, da maneira mais
evidente que nos foi possível, de onde saem as ideias. Mesmo que
isso custe um pouco mais de tempo para leitura e espaço no texto,
certamente é muito motivador aos iniciantes.

Leonardo Câmara

Vitória–ES, setembro de 2025
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1

Sistemas Lineares

Iremos introduzir o conceito de sistemas lineares e determinar sua relação
com o espaço de matrizes. Antes disso, iremos introduzir algumas noções
preliminares.

1.1 Matrizes, transpostas e inversas

Comecemos por algumas noções que são fundamentais ao longo do
texto.

Notação 1.1.1 Uma matriz A com m linhas e n colunas será por vezes
denotada por Am×n. O conjunto de tais matrizes será denotado
por M(m, n). Quando quisermos destacar as entradas da matriz A,
iremos denotá-la por A = (aij)m×n ou somente por A = (aij), caso não
haja dúvidas a respeito do número de linhas e colunas de tal matriz.

Passemos agora à questão da inversibilidade de uma matriz.

Definição 1.1.2 Diremos que uma matriz An×n é invertível (ou
invertível) se existir Bn×n tal que

AB = In = BA. (1.1.1)

Exemplo 1.1.3 A = ( 1 0
0 −1/2 ) é invertível, pois B = ( 1 0

0 −2 ) satis-
faz (1.1.1).



A GEOMETRIA DOS ESPAÇOS VETORIAIS

O exemplo acima suscita naturalmente a seguinte questão: existe
uma outra matriz B′ que satisfaça a relação (1.1.1)? Segundo o
resultado a seguir, a resposta é negativa.

Lema 1.1.4 Se An×n é invertível, então existe uma única matriz Bn×n

satisfazendo (1.1.1).

Demonstração: Suponhamos que B1, B2 satisfaçam a relação (1.1.1),
então

B1 = B1 I = B1(AB2) = (B1A)B2 = IB2 = B2

□

O lema acima justifica a introdução do seguinte conceito.

Definição 1.1.5 Se An×n é invertível, então a única matriz Bn×n

satisfazendo (1.1.1) será chamada de inversa de A e será denotada
por A−1.

Exemplo 1.1.6 Seja Ikℓ a matriz obtida da identidade pela permuta
entre a k-ésima e a ℓ-ésima linhas, então Ikℓ é invertível e I−1

kℓ = Ikℓ.
De fato, temos

Ikℓ =



1
. . .

1
0 · · · 1
...

...
1 · · · 0

1
. . .

1


.

Assim sendo, um cálculo imediato mostra que Ikℓ Ikℓ = I.
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