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Nota do Editor

A ideia de editar esta obra não é nova. Tratando-se de um texto
de primeira grandeza, escrito de forma esmiuçada e paulatina,
visando ainda à autossuficiência, tanto quanto possível, e redigido em
português por um dos grandes expoentes da Matemática do século
XX, quando esteve no Brasil nos anos 1940, parecia inevitável que, em
algum momento, eu me debruçasse sobre esta obra para produzir uma
nova edição. Mas a tarefa sempre fora postergada em função de não
poucos outros afazeres.

Em um encontro casual no meu primeiro ano de doutorado com
o Prof. Odilon Luciano, em uma cafeteria da Universidade de São
Paulo, compartilhando essa paixão comum por livros clássicos, contei
sobre meu desejo e a dificuldade de tempo que enfrentaria, haja
vista que teria de fazer uma edição do zero (digitação, confecção
de figuras, diagramação, revisão, etc.). Mas então o Prof. Odilon
me falou que um de seus colegas, José Augusto Abrantes, já havia
digitado o livro inteiro. Nesse momento, percebi que a parte mais
trabalhosa do processo já tinha sido feita, então não havia por que
adiar mais. Reunimo-nos, então, Augusto, Odilon e eu, na sala de
convivência do Instituto de Matemática e Estatística da Universidade
de São Paulo (IME-USP), e demos início aos trabalhos. Após quatro
anos, apresentamos ao público esta magnífica obra.

Inicialmente, a obra fora publicada pela Sociedade de Matemática
de São Paulo em três volumes: 1946, 1947 e 1958, confeccionados em
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datilografia mecânica por Luiz Henrique Jacy Monteiro a partir dos
apontamentos do curso do Prof. Jean Dieudonné, oferecido a então
Faculdade de Filosofia, Ciências e Letras da Universidade de São
Paulo, no ano de 1946. Resolvemos, por uma questão de pragmatismo,
publicar a obra em um único volume, dividido em três partes, que
correspondem aos volumes originais.

Thiago Augusto S. Dourado

São Paulo, dezembro de 2025
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Introdução

A noção de corpo comutativo é, essencialmente, a de um sistema
de elementos sobre os quais se podem efetuar duas operações
fundamentais, a adição e a multiplicação, de tal modo que todas as
regras formais do cálculo algébrico sobre os números racionais (com
exceção das regras relativas às desigualdades) permaneçam válidas.
Uma tal concepção só poderia surgir no dia em que se percebesse a
necessidade de se considerar outros “números” além dos racionais;
e é bem a esta época que é preciso fazer recuar a história da noção
de corpo. Se se faz abstração, com efeito, das imperfeições da
álgebra dos gregos (e principalmente do fato de que eles ignoravam os
números negativos), é igualmente um fato que o movimento de ideias
que acompanhou a descoberta dos números irracionais introduziu na
ciência duas concepções fundamentais: de uma parte — com a teoria
das “razões” edificada por Eudóxio, equivalente à teoria de Dedekind
para números reais positivos — a noção de extensão formal de um
sistema de “números”, ligada à necessidade de definir para os novos
“números” introduzidos a igualdade e as operações fundamentais,
e daí demonstrar as propriedades, apoiando-se unicamente sobre as
propriedades do sistema inicial; de outra parte, um primeiro germe
de classificação dos irracionais, em relação estreita com os problemas
clássicos de “construção por régua e compasso” que viriam ser a fonte
de muitos progressos ulteriores.



INTRODUÇÃO

Sob sua forma geométrica inicial, e mais ainda sob a forma
algébrica mais geral do problema de resoluções de equações “por
radicais”, esses últimos problemas não deixaram de atrair a atenção
dos matemáticos durante a Idade Média (quando a teoria abstrata de
Eudóxio, muito acima da ciência da época, permanecia de lado). Mas
foi somente no século XVI que apareceram os primeiros progressos
importantes nessa via, com a descoberta das fórmulas de resolução
por radicais das equações gerais de terceiro e quarto graus, devido à
escola italiana; fato mais importante do que as próprias fórmulas, sua
aplicação encontrou a necessidade de ampliar mais uma vez a noção
de número, introduzindo as raízes quadradas de números negativos,
isto é, os imaginários. Mais ainda que para os irracionais, aqui se trata
de uma extensão “formal”, pois decorreram dois séculos para que se
tivesse uma representação geométrica desses números; mas, durante
toda essa época (muito afastada, no conjunto, do espírito de rigor dos
gregos), os números complexos foram manejados experimentalmente,
sem a busca de se fazer repousar sua teoria sobre bases sólidas.
Em fins do século XVII, e apesar de todas as tentativas infrutíferas
de determinar a fórmula de resolução “por radicais” das equações
de grau superior ao quarto, chegou-se à convicção de que toda
equação algébrica tinha raízes complexas (“teorema de d’Alembert”,
cuja primeira demonstração rigorosa foi dada por Gauss), não parecia,
então, necessário estender, novamente, a concepção de “número”.

Foi neste momento que se abriu o período moderno da teoria,
com as pesquisas de Lagrange: analisando as razões do sucesso dos
métodos de resolução das equações de grau não superior à 4 e do
insucesso das tentativas de extensão desses métodos, mostrou que
elas estavam ligadas à existência de funções das raízes da equação
que permaneciam invariantes por determinadas permutações dessas
raízes. É esta ideia que conduziria, um pouco mais tarde, Ruffini e
Abel à demonstração da impossibilidade da resolução por radicais das
equações gerais de grau superior a 4; posteriormente, coube a Galois
à teoria definitiva das resoluções das equações algébricas por meio
de equações de grau inferior. Então, a noção de corpo de números
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algébricos era então conhecida em toda a sua generalidade e iria
dominar a Teoria dos Números durante o século XIX.

Enfim, durante este último período, outros trabalhos levaram
ainda a estender o conceito de corpo: de uma parte, a teoria dos
corpos finitos, que decorre dos trabalhos de Galois; em segundo
lugar, o método de Dedekind e Weber para o estudo de curvas
algébricas, que repousa sobre a teoria dos corpos de funções algébricas;
e, finalmente, a introdução de Hensel da fecunda noção de números
p-ádicos. Restava somente reunir uma teoria geral das propriedades
comuns a esses diversos corpos; esta foi a obra de Steinitz, que, numa
memória fundamental publicada em 1910 (Journal de Crelle, vol. 137),
deu a classificação completa de todas as estruturas possíveis de corpo
comutativo.

Neste curso, desenvolveremos a teoria de Steinitz e alguns de
seus prolongamentos mais interessantes. Após ter recordado, nos
dois capítulos preliminares, as noções fundamentais da Álgebra
Moderna que nos serão necessárias (grupos, anéis, espaços vetoriais,
polinômios), estudaremos, no Capítulo III, a teoria geral das extensões
de um corpo dado. O Capítulo IV será reservado para a teoria
dos isomorfismos das extensões algébricas de um corpo, que
conduz à importante distinção entre extensões separáveis e extensões
inseparáveis, e tem sua aplicação na teoria de Galois, que forma o
objeto dos Capítulos V e VI. No Capítulo VII, estudaremos um tipo
bem peculiar de corpos: os corpos ordenados. Por fim, o último
capítulo será consagrado ao estudo das valorizações sobre um corpo e
suas extensões algébricas, bem como às aplicações dessa noção à teoria
da divisibilidade nas extensões algébricas de um corpo.

Noções Gerais sobre Teoria dos Conjuntos

1. Uma aplicação de um conjunto E em um conjunto F é uma operação
que, a cada elemento x de E, faz corresponder um e somente um
elemento y de F; se f designa uma aplicação de E em F, indica-se
com f (x) ou fx (notação indicial) o elemento de F que corresponde

3
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a x pela aplicação f e que se chama a imagem de x por f , ou o valor
de f para o elemento x. A aplicação f se escreve também x → f (x).
As aplicações de um conjunto E em F são os elementos de um novo
conjunto, o conjunto das aplicações de E em F, que se indica por FE;
para que duas aplicações f e g de E em F sejam iguais, é necessário e
suficiente que f (x) = g(x) para todo x ∈ E.

A aplicação x → x de E em E é denominada aplicação identidade
de E. Se A for uma parte de E, a aplicação que, a todo x ∈ A, faz
corresponder o mesmo elemento x, considerado como elemento de E,
é chamada aplicação canônica de A em E.

Se f for uma aplicação de E em E, diz-se que x ∈ E é invariante
por f se f (x) = x.

Se f for uma aplicação de E em F, e A uma parte de E, a
aplicação fA que, a todo x ∈ A, faz corresponder f (x), é denominada
restrição de f ao conjunto A; inversamente, f é chamada prolongamento
à E da aplicação fA.

2. Diz-se que uma aplicação f de E em F é uma aplicação sobre F se,
para todo y ∈ F, existe um x ∈ E (pelo menos) tal que f (x) = y.

Diz-se que uma aplicação f de E em F é uma aplicação unívoca
de E em F se da relação f (x) = f (x′) resultar x = x′.

Diz-se que uma aplicação f de E em F é uma aplicação biunívoca
de E sobre F se, para todo y ∈ F, existe um e somente um x ∈ E tal que
y = f (x); se indicarmos com g(y) este elemento x, g é uma aplicação
biunívoca de F sobre E, denominada aplicação recíproca de f .

Uma aplicação biunívoca de E sobre si mesmo é denominada
permutação de E.

3. Seja f uma aplicação de E em F; para toda parte X de E, designa-
se por f (X) o conjunto dos y ∈ F tais que exista um x ∈ X tal que
y = f (x); diz-se que f (X) é a imagem de X por f e a aplicação X → f (X)

de P(E) (onde P(E) indica o conjunto formado pelos subconjuntos
de E) em P(F) é denominada extensão de f ao conjunto das partes. A

4
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relação X = ∅ é equivalente a f (X) = ∅. Da relação X ⊂ Y resulta
f (X) ⊂ f (Y).

Para toda parte Y de F, o conjunto dos x ∈ E tais que f (x) ∈ Y
é indicado por f−1(Y) e denominado imagem recíproca de Y por f ; da
relação X ⊂ Y resulta f−1(X) ⊂ f−1(Y); tem-se f−1(∅) = ∅, mas se
pode ter f−1(X) = ∅ para uma parte não vazia X de F, salvo quando f
é uma aplicação de E sobre F.

4. Se f é uma aplicação de E em F, g é uma aplicação de F em G, a
aplicação x → g( f (x)) de E em G é denominada composta de g e de f ,
e indicada por g ◦ f ; se h = g ◦ f , tem-se h(X) = g( f (X)) para toda
parte X de E e h−1(Z) = f−1(g−1(Z)) para toda parte Z de G.

5. Quando se dá uma aplicação ι → xι de um conjunto I em um
conjunto E, diz-se também que se deu uma família de elementos (xι)ι∈I
tendo I para conjunto de índices. O conjunto dos elementos da família é a
imagem de I pela aplicação ι → xι; duas famílias distintas podem ter
o mesmo conjunto de elementos. Uma sequência é um caso particular
de uma família, correspondente ao caso em que I é o conjunto dos
inteiros positivos; uma sequência finita corresponde ao caso em que I é
um conjunto finito de inteiros.

6. Se (Xι)ι∈I é uma família de partes de E, a união dessa família é o
conjunto dos x ∈ E tais que existe pelo menos um Xι tal que x ∈ Xι;
indica-se este conjunto por

⋃
ι∈I Xι; a união de uma sequência finita

(Xi)1≤i≤n indica-se por X1 ∪ X2 ∪ · · · ∪ Xn.
A interseção da família (Xι)ι∈I é o conjunto dos x ∈ E tais que

x ∈ Xι para todo ι ∈ I; indica-se esse conjunto por
⋂

ι∈I Xι; a interseção
de uma sequência finita (Xi)1≤i≤n indica-se por X1 ∩ X2 ∩ · · · ∩ Xn.

Para toda aplicação f de E em F e toda família (Xι)ι∈I de partes
de E, tem-se

f

(⋃
ι∈I

Xι

)
=
⋃
ι∈I

f (Xι);
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e para toda família (Yλ)λ∈L de partes de F, tem-se

f−1

(⋃
λ∈I

Yλ

)
=
⋃

λ∈L

f−1(Yλ) e f−1

(⋂
λ∈I

Yλ

)
=
⋂

λ∈L

f−1(Yλ).

7. Chama-se produto de dois conjuntos E e F e se indica por E × F o
conjunto dos pares (x, y) tais que x ∈ E e y ∈ F. Define-se do mesmo
modo o produto de mais de dois conjuntos.

A toda relação R entre um elemento x ∈ E e um elemento
y ∈ F corresponde o conjunto de pares (x, y) de E × F tais que x e y
estejam ligados pela relação R. Este conjunto é denominado conjunto
representativo da relação R.

Em particular, se f é uma aplicação de uma parte A de E em F,
o conjunto dos pares (x, y) de E × F tais que x ∈ A e y = f (x) é
o conjunto representativo ou o gráfico da aplicação f . Para que uma
aplicação g de uma parte de E em F seja um prolongamento de f , é
necessário e suficiente que o gráfico de f esteja contido no gráfico de g.

Sejam f uma aplicação de E em E′ e g uma aplicação de F em F′:
a aplicação (x, y) → ( f (x), g(y)) de E × F em E′ × F′ é denominada
extensão ao produto das aplicações f e g.

8. Diz-se que uma relação R entre dois elementos (variáveis) de um
conjunto E é uma relação de equivalência se ela verificar as seguintes
condições:

1º) Tem-se R(x, x) para todo X ∈ E (reflexividade);
2º) Se se tem R(x, y), tem-se também R(y, x) (simetria);
3º) Se se tem R(x, y) e R(y, z), tem-se também R(x, z) (transitividade).

Para todo x ∈ E, o conjunto dos y ∈ E tais que R(x, y) é um
conjunto Kx denominado classe de equivalência de x; os elementos de Kx

são ditos equivalentes a x (pela relação R); se y ∈ Kx, tem-se Ky = Kx;
se y /∈ Kx, tem-se Kx ∩ Ky = ∅.

O conjunto das classes de equivalência Kx (parte de P(E)) é
denominado conjunto quociente de E pela relação R e indicado por E/R
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em geral; a aplicação x → Kx de E sobre E/R é denominada aplicação
canônica.

9. Diz-se que uma relação ω entre dois elementos (variáveis) de um
conjunto E é uma relação de ordem se verificar as seguintes condições:

1º) Se se tem ω(x, y) e ω(y, z), tem-se também ω(x, z) (transitivi-
dade);

2º) Se se tem ω(x, y) e ω(y, x), tem-se necessariamente x = y.
Um conjunto munido de uma relação de ordem é denominado

conjunto ordenado (por esta relação). A relação de inclusão X ⊂ Y
entre partes de um conjunto E é uma relação de ordem em P(E); a
relação “g é um prolongamento de f ” entre aplicações f e g de partes
de E num conjunto F é uma relação de ordem no conjunto de todas
as aplicações. Uma relação de ordem sobre um conjunto E é indicada,
em geral, por x ≤ y; a relação x < y significa então que x ≤ y e x ̸= y.

Um conjunto E é denominado totalmente ordenado por uma relação
de ordem x ≤ y se para dois elementos quaisquer x, y de E tem-se
sempre, seja x ≤ y, seja y ≤ x.

10. Diz-se que uma parte A de um conjunto ordenado E admite um
menor elemento (respectivamente, maior elemento) a ∈ A, se para todo
x ∈ A, tem-se a ≤ x (respectivamente, x ≤ a); se este elemento
existir, ele é único. Se A é um conjunto de partes de E, o menor
elemento (respectivamente, maior elemento) pela relação de inclusão é
a interseção (respectivamente, a união) dos conjuntos pertencentes a A,
desde que esta interseção (respectivamente, união) pertença a A; no
caso contrário, A não tem menor elemento (respectivamente, maior).

Diz-se que um elemento a de uma parte A de E é minimal
(respectivamente, maximal) se não existir nenhum elemento x de A
tal que x < a (respectivamente, a < x); se A tiver um menor
elemento (respectivamente, maior elemento), este é o único elemento
minimal (respectivamente, maximal), mas um conjunto pode ter uma
infinidade de elementos minimais (respectivamente, maximais), ou
não ter nenhum.
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Diz-se que um conjunto A ⊂ E possui um extremo superior
(respectivamente, extremo inferior) se o conjunto B dos elementos y
de E que são tais que y ≥ x (respectivamente, y ≤ x) para todo
x ∈ A, possui um menor elemento (respectivamente, um maior
elemento); este elemento é, então, por definição, o extremo superior
(respectivamente, extremo inferior) de A.

11. Diz-se que um conjunto ordenado é indutivo se toda parte G de E,
totalmente ordenada (nº 9) possui um extremo superior (nº 10).

Teorema de Zorn. Todo conjunto ordenado indutivo possui pelo menos
um elemento maximal.

Em particular, um conjunto A de partes de E é indutivo (pela
relação de inclusão) se, para toda parte B de A totalmente ordenada,
a união dos conjuntos de B pertence a A.

12. Seja E um conjunto considerado como fundamental, A, B, . . . um
certo número de conjuntos considerados como auxiliares. Diz-se que
um conjunto pertence à escala de conjuntos construída sobre E, A, B, . . . ,
se ele se obtém repetindo um certo número de vezes a partir destes
conjuntos as operações que consistem em formar o produto de dois
conjuntos ou o conjunto das partes de um conjunto; por exemplo, E× A,
P(E × E), P(P(E)) e P(A ×P(E)) são conjuntos da escala.

Por definição, uma estrutura sobre E é um elemento σ de um
dos conjuntos da escala precedentes. Por exemplo, uma relação
de ordem ω sobre E define uma parte de E × E, seu conjunto
representativo (nº 7) é um elemento σ de P(E × E); σ é a estrutura
de conjunto ordenado definida sobre E pela relação ω. Do mesmo modo,
uma aplicação f de A × E em E define uma parte de (A × E)× E, seu
gráfico (nº 7) é então um elemento σ de P((A × E)× E); esta aplicação
(dita lei de composição externa sobre E) define então uma estrutura σ

sobre E.
Seja E′ um segundo conjunto fundamental. A todo conjunto M

da escala construída sobre E, A, B, . . . , corresponde um conjunto M′

da escala construída sobre E′, A, B, . . . , obtido efetuando sobre
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